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We show some inaccuracies in recent arguments claiming that in the long-time 
limit the initially correlated A + B--* 0 diffusion-limited reaction can be faster 
than the A + A---, 0 one. With the errors corrected, these arguments seem to 
confirm the former theory of Toussant and Wilczek according to which the 
global rate of both reactions should ultimately be the same. This hypothesis is 
also supported by our numerical simulations of a two-dimensional lattice 
system. 
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1. I N T R O D U C T I O N  

The  a n o m a l o u s  behav io r  of di f fusion- l imited a n n i h i l a t i o n  react ions  is of  
much  cur ren t  interest ,  a n d  several r igorous  results have a l ready been 
ob t a ined  for these problems.  In  par t icular ,  it is k n o w n  t1'2~ that  the g lobal  
densi ty  of part icles p(t) in the A + A - - ,  0 process is, as t ime t goes to 
infinity,  p r o p o r t i o n a l  to pA, where 

f t 1/2, d < 2  

pA(t )=~ln( t ) / t ,  d = 2  (1) 

I t  -1, d > 2  

and  d is the (Euc l idean)  space d imens ion .  A n o t h e r  r igorous  result  (3) is that  
the densi ty  of part icles in the A + B ~ 0 process with an  uncor re la ted  ini t ial  
cond i t i on  decays as pU, where 

~t -a/4, d < 4  (2) 
p U ( t ) = [ t - l ,  d>~4 
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and where we assumed the global initial concentrations of both species to 
be exactly the same. 

However, there are also diffusion-limited reactions for which no 
rigorous results are known. Here we shall consider one of them-- the  
A + B --* 0 problem with initially correlated concentrations of A's and B's. 
Following refs. 4 and 5, we shall assume that a correlated initial condition 
is prepared by depositing pairs A-B at random locations in the system, the 
distance between the members of each pair being a constant c. Notice that 
with this definition c can be interpreted as the radius of correlations, and 
as it approaches infinity, the correlated initial condition turns into the 
uncorrelated one. 

There are two heuristic theories describing the initially correlated 
A + B--* 0 reaction in the long-time limit, each giving different predictions. 
According to Toussant and Wilczek, 161 such a reaction should proceed 
exactly like the A + A --* 0 one, so we should expect p(t), the density of par- 
ticles, to be proportional to pA(t). On the other hand, Lindenberg eta/. 14~ 
came to the conclusion that it should decay as pL, where 

{;-_,d+2,/4, d < 2  
PL(t)= ~, d>~2 (3) 

This result is somewhat puzzling, as the comparison of Eqs. (I)  and (3) 
implies that for d~<2 the A + B ~ 0 process should be faster than the 
A + A --* 0 one, which is at odds with our intuitive picture of the diffusion- 
limited reactions. In the A + B--* 0 system only collisions between unlike 
particles can result in decrease in p(t), whereas in the latter process any 
collision can have such effect. Thus the A + A--* 0 reaction should be at 
least as fast as the A + B--* 0 one. 

The main purpose of this paper is to compare the two theories 
and determine which of them gives a better description of the initially 
correlated A + B--. 0 reaction. For better comparison they are briefly out- 
lined in Section 2. In the next section we argue that they refer to two essen- 
tially different models and therefore their predictions can be completely 
inconsistent with each other. In Section 4 we present results of our numeri- 
cal simulations of a two-dimensional initially correlated A + B--* 0 reac- 
tion. Our data seem to confirm that the density of this system behaves in 
accordance with Eq. (1). Finally, Section 5 is devoted to conclusions. 

2. SURVEY OF PREVIOUS THEORIES 

2.1. Scaling Theory of Toussant and Wilczek 

One of the problems examined by Toussant and Wilczek ~61 was how 
to determine the behavior of a system A + B ~ 0 of particles A and anti- 
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particles B with a correlated initial condition. They noticed that for d~< 2 
the random walk executed by each particle is reentrant, i.e., the probability 
of a random walker visiting any given point approaches one. The volume 
so covered in a time t, V,, is proportional to t~/2 and t/In t for d =  I and 
d =  2, respectively, ~ and any antiparticle B in this region should probably 
have been annihilated. It is then argued that the initially correlated system 
cannot separate into single-species patches of linear size much bigger 
than c. Therefore the number N, of like particles remaining in V, should, 
for sufficiently large time t, be O(1), which leads to (1) since p ~  N, /V , .  
This is so because if N, could grow in the long-time limit, then V, would 
constitute an inflating patch of like particles whose linear size lA ~ V]/d 
could be made arbitrarily large. Notice that the above reasoning leads to 
the conclusion that Eq. (1) constitutes the lower boundary for the density 
of any s.ystem with the A + B--* 0 reaction in the long-time limit, which 
implies that in this limit the A + B--, 0 reaction cannot be faster than the 
A + A ~ 0 one. As for the case d >  2, the result p(t) ~ t -  ~ was obtained by 
a simple dimensional argument. 

2.2. Continuous Approach of Lindenberg, West,  and Kopelman 

Lindenberg etal/4) assumed that the evolution of the initially 
correlated A + B ~ 0 problem can be described with the equation 

~A(r, I)=DV2pA(r,  t ) --kpA(r,  t) pa(r, t) (4) 

and similarly for Pa, where PA and Pa are the local concentrations of 
A's and B's, D is the diffusion constant, and k is a constant controlling 
the local reaction rate. Let ) , ( r , t ) - - �89  and p( r , t ) - -  
�89 t ) +  PB(r, t)]. Then short analytic reasoning yields 

Po - e x p  _ , .2 /80 , )  
(y2(r, t ) )  2(8nDt)a/2 (1 (5) 

where Po is the initial global concentration of either species, and ( . - . )  
denotes the average over the ensemble of correlated initial conditions 
parametrized by the distance between the members of each pair c. The 
initial conditions imply that (p(r,  t ) )  is independent of r for all time, and 
therefore it is equal to the global density p(t). By taking the averages of 
Eq. (4) one arrives at 

(~(r, t ) )  = - k [ ( p Z ( r ,  t ) )  - (y2(r, t ) ) ]  (6) 

Now Lindenberg et al. assume that as t goes to infinity, (p2(r, t ) ) ~  
(p(r,  0 )  2, p ( t ) ~ t  -~, and (~,2(r, t ) ) ~ t  -2" for some ~ and p. With all 
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these assumptions Eqs. (5) and (6) imply a = m i n ( # ,  1). Since for finite c, 
or a correlated initial condition, Eq. (5) gives # =  ( d +  2)/4, one arrives at 
the conclusion that in this case p ( t ) ~  pL(t). In the limit c--, oo, or for an 
uncorrelated initial condition, one has p = d / 2  and consequently 
p(t)..~pU(t). The case c = 0  was overlooked in ref. 4. Clearly in this case 
PA =PB and Eq. (4) turns into an equation for the A + A---, 0 reaction 

/SA(r, t ) =  OV2pA(r, t)--kp2A(r, t) (7) 

Moreover, as in this case (~,2(r, t ) )  =0 ,  Eq. (6) turns into/~(t).,- - kp2( t ) ,  
i.e., p(t).,~ t -~ regardless of the space dimension d. Henceforth we shall 
refer to the above reasoning as the LWK model. 

2.3. Heuristic Reasoning of Lindenberg, Shen, and Kopelman 

In another paper Lindenberg et al. ~5~ presented another argument to 
support their conclusion that the initially correlated A + B --. 0 process can 
be faster than the A + A--* 0 one. Let X -1 denote the probability that a 
particle has a nearest neighbor with which it can react. In the A + A--* 0 
reaction any particle can react with any other, so X - I =  1. However, in 
the A + B--* 0 case X -1 may deviate from unity due to the presence of 
aggregates of like particles, which, by definition, cannot react with each 
other. For example, in the case of an uncorrelated initial condition 
X-~ t -~/2. Assume that generally for some y 

X- t  ~ t-r/2 (8) 

Then a simple scaling argument leads to p ( t ) ~  t -=, where 

~ = m i n  ( d ( l - ; ) ,  1) (9) 

This formula recovers properly the behavior of A + A--, 0 ( y = 0 )  and 
initially uncorrelated A + B --. 0 (y = 1) systems. Lindenberg et al. noticed 
that it would also be consistent with their main result for initially 
correlated A + B --* 0 systems, p(t) ~ pL(t) if, for d < 2, 

= ( d -  2)/d 

To account for the negative value of y for d = 1, they considered the follow- 
ing, in a way extreme situation in one dimension: pairs A-B are distributed 
at random a distance c lattice constants apart, with B always to the right 
of A. Initially the largest possible size of aggregates is c. As the reaction 
proceeds, the particles at the ends of the aggregates react, the number of 
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particles per aggregate decreases, and consequently X-~ increases. Thus, 
according to ref. 5, for one-dimensional systems y must be negative. As the 
global reaction rate is proportional to X -~ -.. t -~'/2, A + B --* 0 reactions 
must be faster than A + A ~ 0 ones. 

3. ANALYSIS  

Several questions may arise after comparing the arguments outlined 
above. Can the A + B ~ 0 reaction be really faster than the A + A ~ 0 one? 
Why do these approaches yield different results? And which of them is 
correct? 

First of all notice that in contrast to the scaling theory of Toussant 
and Wilczek, the LWK model fails to predict the correct form of decay of 
the density in A + A ~ 0 systems. It is not difficult to find a mathematical 
reason for this. As pointed out by Doering and ben-Avraham, ~ Eq. (7), 
even with random initial conditions, necessarily leads to the mean-field 
result p A ( t ) ~ t  -1 for any space dimension. The physical reason for this is 
that the anomalous behavior of A + A ~ 0 systems in low dimensions arises 
from an anomalous form of correlation functions, which, in turn, results 
from averaging over all possible random walks of the particles. As we 
noticed above, these walks are highly (negatively) correlated for d~< 2. On 
the other hand, the averages in the LWK model are taken only over the 
initial conditions, the evolution of the system assumed to be fully governed 
by a deterministic equation (7) in which no correlations are taken into 
account. 

One might hope that this drawback could be removed if one assumed 
that pA(r, t) in Eq. (7) represents not the concentration, but rather the 
probability of finding a particle at (r, t). This, however, would not help 
much, as to tackle the problem so posed one would have to replace in this 
equation the simple mean-field reaction term --kp2A with an appropriate 
two-particle correlation function. This function, in turn, would depend on 
a three-particle correlation function and so on ad infinitum. ~6~ 

As we can see, the two approaches considered here, though they refer 
to the same physical problem, are based on essentially different assump- 
tions and therefore can lead to different conclusions. Because of this the 
procedure employed in ref. 3--comparing Toussant and Wilczek's results 
for the A + A ~ 0 problem with the predictions of the LWK model for the 
A + B ~ 0 reaction~-could, and actually did, lead to puzzling conclusions. 
The proper procedure is to compare results obtained within the same 
model. In this case Toussant and Wilczek's scaling theory predicts both 
types of reaction to be equally fast for any space dimension. The LWK 
model predicts such behavior for d>_-2 and the A + A ~ 0 reaction to be 

822/76/3-4-8 
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faster than the A + B ~ 0 one for d <  2. Thus none of these theories, if 
properly applied, leads to the conclusion that the A + B--* 0 reaction can 
be faster than the A + A ~ 0 one. 

Notice, however, that the LWK model gives the correct result 
p(t )  ~ pU(t) in the case of uncorrelated A + B ~ 0 systems. This property 
reflects the fact that such processes are essentially "fluctuation-dominated" 
- - the  impact of initial fluctuations in concentrations of the two species 
turns out to be so great that correlations in the motion of the particles, 
whether or not accounted for, become irrelevant. 

However, there is still the third, heuristic argument of Lindenberg 
et al., ~5~ which, despite accounting for the correlations, leads to the conclu- 
sion that initially correlated A + B ~ 0 reactions are unavoidably faster 
than A + A ~ 0 ones. We shall show not only some inaccuracies in this 
reasoning, but that a simple correction of it confirms the prediction of 
Toussant and Wilczek. First of all notice that if y in Eq. (8) were negative, 
g -~ would go to infinity. This is impossible since X-I  is interpreted as 
probability. Therefore the reasoning of ref. 5 can be applied only to finite 
intervals rather than to the t ~ ~ limit. The main thread of the next argu- 
ment, which refers to the one-dimensional system of pairs A-B distributed 
so that B is always to the right of A, is that the size of initially big 
aggregates of like particles decreases with time, and so the probability Z-  
( ~  t -r/'-) that a particle can react with its nearest neighbor increases, lead- 
ing to a negative value of ~. This argument, however, does not take into 
account the fact that the increase of this probability starts from a relatively 
small value (caused by the existence of the aggregates) and then slowly 
grows to its limiting value. The reaction rate is proportional to X-~- Since 
in the A + A --* 0 case Z-  ~ = 1 by definition, we again conclude that in the 
long-time limit A + B--* 0 reactions cannot be faster than A + A ~ 0 ones. 

We shall finish this section with another example of an initially 
correlated one-dimensional A + B ~ 0 systems which can be easily shown 
to behave in accordance with Toussant and Wilczek theory rather than the 
LWK model. Consider an infinite chain of particles ...-A-B-A-B-... such that 
the distance between each pair of neighboring particles is a constant c. 
Initially each particle can react with any of its nearest neighbors (and so 
X - l =  1) and evidently this property remains satisfied as the reaction 
proceeds, too. Thus this initially correlated A + B  ~ 0  system behaves 
exactly like the A + A--* 0 one, i.e., p ( t ) ~  t -~/2, whereas the LWK model 
predicts p(t).,~ t-3/4 

4. N U M E R I C A L  S I M U L A T I O N S  

The algorithm we employed is a faithful implementation of a cellular 
automata technique developed by Chopard and Droz, ~s~ the initial condi- 
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tions being the only difference. Briefly speaking, we used a square lattice 
L x L with periodic boundary  conditions in all directions. We assumed that 
there were two kinds of particles (A and B). At each time step each particle 
hopped at random to one of the four nearest-neighbor sites, but no pair of 
particles was allowed to move simultaneously along the same bond in the 
same direction ("exclusion rule"). Thus there could be up to four particles 
at a given site at a time, each moving in different direction. When two 
unlike particles head-on collided, they necessarily reacted and disappeared 
from the system. Usually we used the lattice with L = 2500 and carried out 
as any as /max = 106 iterations. This was possible because the speed of our 
program was inversely proport ional  to the rapidly decreasing density of 
particles rather than to the (constant) volume of the lattice. 

We started our  numerical analysis with a few simulations of the 
uncorrelated A + B ~ 0  problem with L = 2 5 0 0  and tmax= 106 . Several 
numerical simulations have been carried out for these systems by other 
authors. ~6'91 Usually they used Monte Carlo models in which only one 
particle was allowed to move at a time. They also assumed the reaction to 
occur simply on contact  of  two unlike particles. Comparison of  their results 
with ours reveals no qualitative differences. Thus we conclude that neither 
the cellular au tomata  character of our algorithm nor the fact that we 
allowed only head-on collisions to result in reaction affects the qualitative 
behavior of the system. 

The main part of our  simulations was devoted to the initially 
correlated A + B --* 0 problem. Again we chose L = 2500 and tmax = 106,  but 
this time we averaged the data over N =  I00 samples. Initially we dis- 
tributed the particles so that there was a single pair A-B at each lattice site. 
The directions of their velocities were chosen at random, but in such a way 

9 i i  ~ j l l  i 1  j J n l l j l n l l  I ~  J l l j ~ l l , l l q ' ' l l , ,  I I  ~ 1 1 1 1 1  I I I 

7 

" ' 6  

B 

4 5  . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . .  i 6 B 9 10 1 1 12 13 4 B 

I n ( t . )  

Fig. 1. Plot ofy(t) = t .  p ( t )  vs. In(t) for L = 2500 averaged over 100 samples. The dashed line 
is only a guide to the eye. The error bars are computed as standard deviations of the mean 
value at t = 10 a, 104, 105, and 106. 
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Fig. 2. The same as in Fig. I, but for L = 1000. The dashed line is the same as in Fig. 1 for 
easier comparison. 

that the exclusion rule was satisfied. In this way we obtained extremely 
correlated initial conditions with no fluctuations in density. Any anomalous 
behavior of this system must be caused only by correlations in the trajec- 
tories of the random walkers. 

To determine whether the density in our model goes as t-~ or ln(t)/t  
we plotted y ( t ) =  t .  p(t) vs. In(t) (Fig. 1). Though the plot can be quite well 
estimated with a straight line, the slope of y( t )  shows a slight, but clear 
tendency to diminish. Similar tendency was also observed in previous 
simulations of the initially random A + B-- ,0 problem. ~6"9~ Due to size 
effects the density found in their simulations tended, for large t, to decay 
faster than the theoretical value derived for infinite systems. Notice also 
that in our simulations after 106 iterations a random walker covers on 
average the distance of 1000 lattice constants. As this quantity is very close 
to half of the linear size of the lattice, by this time the influence of size 
effects should have already shown. We tried to estimate their magnitude by 
comparing the results obtained for L = 2500 and L = 1000 (Fig. 2). We can 
see that as the size of the system gets larger, the range in which the plot 
of t .  p(t) vs. In(t) is (nearly) linear becomes wider. This property strongly 
suggests that in the limit t--* co the density of the initially correlated 
A + B - - * 0  reaction decays as ln(t)/t, i.e., exactly as in the A + A - - * 0  
problem. 

5. C O N C L U S I O N S  

We showed several inaccuracies in the arguments of Lindenberg 
eta/. ~4) First of all they overlooked the mean-field character of their main 
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equation (4). The negative correlations in the motion of particles are 
equivalent to their effective "repelling," which is the cause of a decrease 
in the reaction rate. In other words, mean-field theories should tend to 
overestimate the reaction rate of annihilation systems. This explains why 
comparison of their results with the exact ones for the A + A ~ 0 problem 
led Lindenberg et al. to a puzzling conclusion that the A + B--* 0 reaction 
can be faster than the A + A ~ 0 one. By reinterpreting their results we 
showed, however, that as long as one compares only the results obtained 
within the same model, one always gets that the A + A ~ 0 reaction is at 
least as fast as the A + B--* 0 one. 

Next we considered the heuristic reasoning of Lindenberg et al. ~5~ We 
showed that their principal assumption, ~, < 0, leads to several contradic- 
tions, and hence cannot be accepted. As evidently y cannot be positive 
either, it must equal 0, which is the value valid "by definition" for the 
A + A--* 0 problems. In this way the two types of reaction turn out to be 
equally fast, and the prediction of Toussant and Wilczek has been 
supported again. 

This prediction has also been corroborated by our numerical simula- 
tions. The system size and the number of iterations we carried out were 
large enough not only to find the exponent ~ in p ( t ) ~ t  -~, but the 
logarithmic term as well [compare Eq.(1) for d = 2 ] .  In this way the 
cellular automata technique which we employed proved to be a very con- 
venient and effective means of simulations of diffusion-limited annihilation 
reactions. 

One advantage of the LWK model is that it allows us to analyze how 
the rate of different diffusion-limited reactions depends, in low dimensions, 
on two factors: randomness of the initial condition and the correlations in 
the motion of random walkers. In the case of the A + A-- .0  reaction 
( c = 0 )  the initial condition turns out to be irrelevant, and anomalous 
kinetics of the system is entirely due to the correlations in the motion of 
particles. The opposite situation takes place in the random A + B - - , 0  
problem (c --* ~ ) ,  in which the slowing down of the reaction rate is caused 
exclusively by randomness (fluctuations) of the initial condition. An inter- 
esting situation arises in the third, intermediate problem of the initially 
correlated A + B ~ 0 reaction (0 < c < ~ ) .  In this case the randomness of 
the initial condition reduces the decay of the density from the mean-field 
form p ~ t -~ down to the form predicted by the LWK model, p ~ pL, .~  

t -~d+2v4. However,-the negative correlations in the motion of particles 
slow this decay even more, down to p A ~  t-a/2, which makes the random- 
ness of the initial condition irrelevant to this problem, and constitutes the 
main reason why the LWK model fails to give the correct description of 
initially correlated A + B---, 0 reactions for large time. 
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NOTE A D D E D  

In a series of  recent  papers  L i n d e n b e r g  et  al. ~1~ found  tha t  before  the 

b e h a v i o r  of  the sys tem reaches  the long- t ime  l imit  (and this is the only  

case cons idered  in the present  paper) ,  the  ini t ial ly cor re la ted  A + B - - * 0  

di f fus ion- l imi ted  reac t ion  goes  t h rough  several  s tages cha rac te r i zed  by 

va r ious  scal ing proper t ies .  In  par t icu lar ,  they found  tha t  the A + B--* 0 

process  can  be faster than  the A + A --* 0 one  before  the final s tage of  the 

e v o l u t i o n  has been a t ta ined.  
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